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A new class of three-dimensional particle simulation models using finite-size particles 
has been developed which is useful for studying plasma behavior in large, cylindrical, and 
toroidal systems. The model makes use of the combination of eigenfunction expansion in 
one direction and the multipole expansion on a two-dimensional spatial grid for solving 
the Maxwell equations and for pushing particles. For a toroidal system, the Poisson equation 
is solved by using the cubic spline technique in the radial direction. It is shown that, using 
presently available computers, full three-dimensional simulations may be carried out for 
real plasma devices such as tokamaks or pinch devices where only several eigenmodes are 
required in the axial direction. Results of the simulations for the thermal fluctuations are 
shown to agree with the theoretical predictions for both cylindrical and toroidal systems. 

1. INTRODUCTION 

Since the pioneering work on one-dimensional models by Buneman [l] and Dawson 
[2], the particle simulatin of plasmas has been in continuous progress as the need 
increases for understanding the nonlinearities and many-body properties associated 
with plasma dynamics. Nonlinear behavior of various microinstabilities, plasma 
heating associated with the parametric instabilities and plasma diffusion due to con- 
vective cells, are some of the examples in which the particle simulation played a 
decisive role for understanding of the physical processes involved. 

Recently, it has been recognized that the particle simulation method can also be 
very useful in more applied fields of plasma physics directly aimed at the controlled 
nuclear fusion research. Some of these examples are the simulations of neoclassical 
diffusion [3], neutral beam injection processes in a tokamak [4], and the impurity 
sputtering from the wall [5]. For these calculations, self-consistent electric and magnetic 
fields are usually ignored and the particle orbits are followed in three dimensions 
for a given electric and magnetic fields. For many cases, Monte Carlo method is 
employed to model the interactions among particles through the Fokker-Planck 
collision operator. 

Most of the self-consistent simulations have been carried out in an idealized 
system in reduced dimensions. To avoid the interaction with the boundary, periodic 
boundary conditions are often employed to simulate an infinite system. Furthermore, 
unrealistic mass ratios are used so as to shorten the computing time. While consider- 

133 
Copyright 0 1911 by Academic Press, Inc. 
All rights of reproduction in any form reserved. ISSN 0021-9991 

58x/25/2-5 



134 CHENG AND OKUDA 

able progress has been made for simulating a plasma with realistic parameters in a 
bounded, finite length system using realistic mass ratios [6], possibilities of simulating 
a full three-dimensional large plasma device has not been much pursued so far. 

In this paper we will explore the possibility of simulating large, three-dimensional 
cylindrical and toroidal plasmas using a hybrid approach of spatial grid and eigen- 
function expansion technique for solving the Maxwell equations and for pushing 
particles. In Section 2, the model is introduced for a cylinder and a torus of rectangular 
cross section. For a toroidal system we have developed a finite-size particle model 
retaining up to the dipole terms, and the radial Poisson equation is solved by cubic 
spline technique. Tests of the models are shown in Section 3 including the measure- 
ments of the thermal spectrum. Concluding remarks are given in Section 4. 

2. MODEL 

1. Basic Ideas For The Model 

It is well known that, for particle simulation of plasmas, there are two major kernels 
which are most important and also most time consuming. One of them is to solve the 
Maxwell equations for the electric and magnetic fields. The other is to push the par- 
ticles according to the equation of motion. 

When one deals with the one-dimensional model where the plasmas are represented 
by a group of positively and negatively charged sheets, the solution of Maxwell 
equations is indeed trivial [l, 2, 71. The electrostatic field, for example, is constant 
everywhere except at the particle location where it jumps by the amount of 47rp 
across a sheet where p is the surface charge density. It is sufficient to count the number 
of positive and negative sheets for determining the electrostatic field. When a sheet 
crosses the other sheet during the course of its motion, the electric field on the sheet 
changes suddenly giving rise to the short-range collisional effects as opposed to co& 
lective effects due to the ordered motion of many particles. It is well known that the 
collisional effects in one dimension is small. 

For two-dimensional simulations, the electrostatic field, for example, generated 
by a two-dimensional charged rod varies as l/r where r is the distance from the charge 
and the observer. In contrast to one dimension, the field becomes very large and 
varies very rapidly when two particles come close enough with each other. In other 
words, the two-dimensional collisional effects are overwhelmingly large so that it can 
wipe out the collective effects easily as was seen in some of the initial effort for the 
two-dimensional simulations. 

The great success of the use of finite-size particles lies in the fact that one can 
disregard the short-range force in a most natural way by assuming a particle has 
finite size comparable to the Debye length, thus eliminating the short-range, two- 
body interactions. Further smoothing is carried out when the force on an extended 
particle is calculated by using a spatial grid. Here, instead of calculating the exact 
force on a particle, an approximate force is calculated using the electric and magnetic 
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fields defined on the spatial grid points [8]. It was found that this procedure is equival- 
ent to the multipole expansion in electrodynamics [9]. 

There are also several examples; where the same technique is extended successfully 
to a full three dimensions using a three-dimensional spatial grid [IO, 111. While this 
model is very efficient in calculating the electric and magnetic fields and the force 
on a particle, one cannot simulate a large volume of plasma due to the limited capacity 
of the available computers. Due to the grid instabilities [12, 131, the Debye length 
should not be smaller than a fraction of grid size d, say, one-half of d. Let us assume, 
for example, one can simulate a system of 64 x 64 x 64 grid using a presently 
available large scientific computer. Assuming an optimum size of grid, say d = 2h, , 
the physical size of the system would then be 128 x 128 x 128 Debye cube. Let us 
compare the size of this simulation with the size of existing real plasma devices. A 
Q-machine [14], which is typically used for basic plasma research, has a plasma 
dimension of l-2 cm radius by 50-100 cm long. This would imply a plasma to be a 
size of lo&200 Debye length across by 5 x lo4 Debye length long. Therefore, the 
simulation plasma is large enough for the cross section while it is much too short 
in the axial direction. Similar conclusions can be drawn for larger fusion devices 
such as tokamaks or stellarators where the length in the toroidal direction is much 
longer than the cross-sectional length. This simply indicates that it is not possible to 
simulate real devices using a most advanced scientific computer to date. Needless to 
say, one would like to * keep the grid quantities such as electric and magnetic fields 
in the central core of a computer while keeping the particle data in the outside device 
such as disks. Because of the fact that the grid quantities are randomly accessed, 
transferring the large grid in and out between disks and main cores would be 
painfully time consuming, and we should consider some other way to save the 
situation. 

While the axial length of the real devices is much longer than the dimension of a 
cross section, we know theoretically and by laboratory experiments that most of the 
important physics for plasma confinement are associated with the modes of very long 
wavelength along the field lines compared with the perpendicular wavelength 
(k, > k ,,). Such, examples are low-frequency drift instabilities, trapped-particle 
instabilities, lower hybrid waves, and the hydromagnetic instabilities including kink, 
tearing and AlfvCn modes. This fact suggests that when simulating these phenomena, 
one need not keep verymany grid points in the axial direction. In fact, the variation 
along the field lines is very slow compared with that in the cross section and therefore 
keeping only a reasonable number of the long-wavelength modes in the axial direction 
should be,. sufficient. This naturally’ suggests a new type of simulation model using a 
normal mode expansion in place of a spatial grid in the axial direction, while using 
the standard grid expansion in a two-dimensional cross section. As will be shown 
this model is quite useful for simulating realistic plasmas using presently available 
computers. It may be necessary, depending on the problems investigated, to build 
in a collision operator through the Monte Carlo technique for random process. This 
will partially compensate the neglect ,of the short-wavelength fluctuations which are 
responsible for the collisional effects. 
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2. Cylindrical Model 

Let us consider, as the first example, a three-dimensional slab model of a rectan- 
gular cross section shown in Fig. 1. A toroidal model is considered later. Assume a 
particle has a finite size given by the Gaussian charge density [9] 

P3c-G Y, 2) = 
43 exp - 

[ ( 
(x - x3Y + (Y - Yj)” + (z - ZJ” 

(2n-)s/2a,u,u, 2az2 2av2 2a,2 )I (1) 
where (xj , y3 , zj) is the location of the center of the jth particle, qj is its total charge, 
and a,, a,, and a, are the particle size in three directions. We consider an electro- 
static field only in this paper, although the extension to include the fully electro- 
magnetic or magnetostatic interactions is straightforward. 

Frc. 1. A sketch for the three-dimensional slab model. Spatial grid is used in the x-y plane while 
the mode expansion is employed in the z-direction. 

The Poisson equation for the electrostatic field would then be 

v2+ = -4 F (242g&~a* exP - [ ( 
0 - s>” + (Y - Y3)” + (z - ZiY 

&2 2av2 )I 2az2 ’ (2) 

We will avoid the numerical difficulties arising from the use of the cylindrical coordin- 
ate throughout the paper, since we believe the Cartesian coordinate is much more 
superior to the cylindrical one in many aspects for numerical computations. 

As described in the previous section, let us expand 4 in terms of eigenfunctions 
which are simply exp(ik,z) for the cylindrical model where k, = 27rn/L, . L, is the 
length of the system which is assumed periodic in z. 
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where N is the number of modes in z one would like to keep in the model. 
Similarly the charge density p(x, y, z) is expanded in the same manner, 

where 

(3) 

(4) 

f&, Y> = i Jr,‘” p(x, y, z) exp (--i F) dz 

1 
= 27raraz/LZ exp ( 

x exp(-ik,z,). (5) 

The equation for C&(X, y) is then found from Eqs. (2)-(5). 

K, - (2774L)21 $&a(& Y) = -47%(x,y). (6) 

Equation (6) is basically the Poisson equation in two dimensions, which can be solved 
by means of the multipole expansion scheme around the nearest grid point using the 
fast Fourier transform (FFT) [9]. Let us outline, for the sake of completeness, the 
multipole expansion method briefly here. 

Let us first Fourier transform Eq. (6) with respect to x and y coordinates. Assuming 
a periodic boundary conditions in both x and y, we find 

-[(kz2 + k,‘) + P4~5,)~l c&k, k,) = -+,(k, , k,) 

where 

P&s , k,) = & j” 1” ,4x, Y) exp[---i(b+ k,y)] dx dy 
sue 0 

= & exp[-(kZ2aZ2 + kg2av2 + kZ2aZ2)/2] C qj 
I Y z j 

x exp[--i(k,zj + b.xj + k,yJl. 

Here k, = 2&/L, and k, = 2rm/L,. 

(7) 

Introducing a two-dimensional spatial grid in the x-y plane, we expand (xj , yj) 
around its nearest grid point, i.e., xi = njZd + 6xj , yj = njYd + 6yj where (n,“, niY) 
is the nearest grid point of thejth particle and (6xj , 6~~) are the displacments from the 
nearest grid point. 

According to the multipole expansion method, we expand exp(--ik,xj) = exp 
(--ik.gzjZd)(l - ik,SxJ and exp(--ik,y,) = exp(--ik#d)( 1 - ik,SyJ keeping up 
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to the dipole moments for each particle. We will keep the exp(-&,zj) term unex- 
panded here because there is no grid in the z direction. Then &(kZ , k,) would then be 

fSdk= , k, , k,) = AZ exp[--(kZ2aE2 + kv2au2 + kZ2aZ2)/2] 5 5 
a=1 s'=1 

x h - ik, Sp? - ik, Spzg) exp [ - i2n [$ + $)I (8) 1: Y 

where pss’ and 6~;~) , Spisj are the monopole and the dipole charge densities at the 
(s, s’) grid point weighted by the eigenfunction exp(-ik,z& They are defined by 

P SS’ = C qj exp(-ik,zj) U(sA - xi) r/(s’A - yj). 

SPL, = 2 qj exp(--ik,z&xj - sA) u(sA - xi) u(dA - yj), 

and 

SP:,, = c qj expt-~k,zj)(yj - s’d) U(sA - xi) U(s’A - yj) 

where 
U(x - Xj) = 1 for 1 x - xj I < A/2, 

= 0 for ( x - xi / > A/2, 

and the summation j is over all the particles. Here L, and L, are the length of the 
system in x and y in terms of the grid size A and therefore they correspond to the 
total number of grid points in each direction. It is clear that the double summation 
on the right-hand side of Eq. (8) is the two-dimensional fast Fourier transform of the 
weighted monopole and dipole charge densities on the grid points. It is straightforward 
to find the potential &(x, y) by the inverse fast Fourier transform of +,(k, , k,) 
with respect to (k, , k,), i.e., 

#&4 ~‘4 = 5 5 #dk, , k,) exp [i27r f$ + $$)I. 
I=1 Z'=l 

Finally the total potential will be given by summing over n as given by Eq. (3). 
It is clear that the simulation method described above takes full advantage of both 

multipole expansion method in terms of finite-size particles combined with the fast 
Fourier transform technique on a spatial grid and the eigenfunction expansion method 
in the axial direction, which is much longer than the transverse dimension and would 
be too long to be represented in terms of a spatial grid. 

Let us now calculate the force on a finite-size particle which is necessary in the 
equation of motion [9]. The electric field force on the jth particle will be given by 

x exp - [ ( 
(X - xj>2 + CY - Yj12 + Cz - zj>2 

2a;’ 2av2 2aZ2 )I 
dx dJ, dz 

(9) 



NEW 3-D SIMULATION MODELS 139 

where E is calculated from C$ and is assumed to take the form of 

E(x, y, z) = i E,(x, y) exp(--2+nz/l,). 
7&=-N 

The z integration can be carried out to find for the force in the x-direction 

F3E(xj, pi 3 zj) = 2nap, n=-N exp -!k f ( -’ 2uz2 ) exp(ik,z,) J/ E&x, y) ; 

x exp - 
1 ( 

(x - XJ” + (Y - VA” 
2ae2 2aY2 )I dx dy 

According to the procedure of multipole expansion scheme [9], F, is now Fourier 
transformed with respect to xj and yj . Then 

F,(k, , k, , ZJ = qj 5 exp (*Lj evWzzj) -%& , k3 
V&=-N 

x exp[-(kZ2aZ2 + kw2az2)/2]. (10) 

F%(x, , yj , zi> is calculated from the inverse fast Fourier transform of (10) and is 
expanded at around the nearest grid point, that is 

Fz(xj , yj , zi) = Fz(njxA, nigAr Zj) + 6xj 2 + 6y, 3 
aY 

keeping up to the dipole terms. The derivatives of Fs are evaluated at the nearest 
grid point and are calculated by differencing F%‘s on the neighboring points. 

In the actual simulations, ions are pushed using the full Lorentz force while the 
electrons are assumed being guiding center particles. The standard predictor-corrector 
scheme is used for the electron orbit integration to keep the higher order of accuracy 
[6]. Furthermore, a modified version of dipole expansion, subtracted dipole, is used 
for all the simulations to reduce the required memory [9]. As will be shown in Section 
3, the model works successfully to produce the expected thermal spectrum. For 
practical purposes, it is important to use a sausage-shape particle elongated in the 
axial direction (a, > a, , aJ since it will naturally suppress the short-wavelength 
fluctuations in the axial direction neglected in the model. 

It should be pointed out that since the model does not use a spatial grid in the axial 
direction, fast Fourier transform is not applicable in that direction. On the other hand, 
since the number of modes in the axial direction kept in the model is typically N = 
5-10, the code is not much slower than the conventional two-dimensional code as 
shown in Section 4. 
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3. Toroidal Model 

After studying the new model for the cylindrical system, let us now consider a 
toroidal application. Consider a torus of rectangular cross section as shown in Fig. 2. 
The Poisson equation in this coordinate takes the form of 

where @(r, 4, z) is the electrostatic potential and is usually assumed to vanish on the 
surrounding conducting wall. We will solve this equation by expanding the potential 
and charge density in terms of the eigenfunction in 4 and the multipole expansion 
around the nearest grid point on the rectangular grid introduced in the poloidal 
cross section as before. 

X 

FIG. 2. A sketch for the toroidal model in the rectangular cross section. Note the coordinate 
chosen in the model. 

Now expanding @ and p in the toroidal direction, 

@(r, 4, 4 = f @,(r, 4 exp(if4), 
n=-N 

PG-, 4, 4 = 2 p&, z) exp(if$). 
n=-N 

Equation (11) is reduced to 

aw, EL+f3&~@n+~= -47rp,. (12) 
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To see how the multipole expansion method works for the toroidal system, let us 
Fourier transform the charge density with respect to $ first. Assuming a particle has 
a gaussian charge density in the cylindrical coordinate, 

Ph., 44 = (2T)3,?&&a* exp - 
[  (  

(r - rj)2 

zap2 
+ (4 - h)” + (2 - 4” 

2u*2 2aZ2 II (13) 

then 

pdr, z) = &- I” p(r, 4, zkind d+ 

= exp( - n%V) 
(W a,az T F exp[-(r - rJ2/2a,2 - (z - zJ2/2a,2 - it+.] 

where a, , a, , and a, are the particle size in the (r, 4, z) coordinate. Note that the 
higher toroidal mode is effectively shielded as exp(-n2u,2/2). 

Fourier transforming pn(r, z) with respect to z, we find 

p&, k,) = -& s” p&, z) exp(--i&z) dz 
z 0 

= exp( - ks2aZ2/2 - n2ab2/2) 
(27r)3/2 arLz 7 $ exp[--i(n& + k,z)l exp[--(r - rj>“/2a7”l. 

We note immediately that the fast Fourier transform may be employed in the z- 
direction. Writing zj = nisdz + 6zj where njZ is the nearest grid point in z for the 
jth particle, we find 

p (r k ) 
n 9 I 

= exp(--kz2az2/2 - n2a42/2) 

(27r)3/2 a7LZ 1 qr exp[--i(n4j + k&dz)] (1 - ik, 6~~) 
j 

x exp[-(r - rj)“/2ar2] + . 
1 

(14) 

Finally we note in the r direction, the fast Fourier transform may not be appropriate 
since the system, Eq. (12), is aperiodic in the radial direction and obviously the tri- 
gonometric functions are not the eigenfunctions. Therefore, instead of using the fast 
Fourier transforms, we solve Eq. (12) by means of a spline method as described 
later. However, to determine the charge density on the radial grid in terms of the 
multipole expansion method, we will use the fast Fourier transform. Since the charge 
density and the potential vanish at the boundaries at r = RI and R2, we will consider 
the system periodic. 

Fourier transforming pn(r, k,) with respect to r, we find 

,&Or , k,) = -& joLR pn(Rl + s, k,) exp( -ik,s) ds 

exp( - kZ2aZ2/2 - n2a,“/2) 
2nLi+L, 7 qj exp[-i(n+f + kznjZ AZ)] (1 - ik, 6~~) 

I 

co 

(27i-;1!2a, --m exp[-(r - ri)2/2a,2 - ik,(r - R,)] 
d(r - ri) 

. r, (15) 
3 
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The r integral may be carried out easily to find 

I,?- = (&2(7, s 
r 

--p 
exp[--(r 1. ri)2/2aT21 exp[-ik,(r - RI)] d(r - rj) 

3 

= exp[(--k,2~,2)/4 
rj 

exp[-ik,(r, - R,)]. 

Introducing a radial grid with the uniform width Ar, r, = R, + njPAr + 6rj and 
keeping only up to the dipole term, Iks becomes 

I, = ev(-k72a~z/2) 
xr 

rj 
exp(--ik,ni* Ar) (I - ik, 6rj). (16) 

Then p,(k, , k,) becomes 

Az(k, , k) = ew[-(k,2a.2LfR;I~ + n2am2)/2] gl$=, 

= (PM, - ik, ~PL - ik, 6~2) exp~-i2~sl,l ) 
r,f 

z 

* exp(- i2m’I’/LR) (17) 

where k, = 2d/L,, k, = 2x1’/LR , and pas’ and SpZ,$ are the nearest grid point and 
the dipole charge contributions at the grid point (s, s’) weighted by the exp(-in+,.) 
defined by 

P ss’ = T qj exp(-iin&) U(sAz - q) U(R, + s’dr - rJ, 

ap:,, = c qj exp(-iin+J (zj - sdz) U(sAz - zj) U(R1 + s’dr - ri), 
3. 

and 

aP:d = 2 qj exp(-iin+J (rj - RI - s’dr) U(sAz - zJ U(RI + s’dr - rJ. 

Note that we have approximated ri = r,,[I + O(Sr,/rj)] and &Jr? is smaller than the 
dipole term by the aspect ratio. In Eq. (17) the expansion of the finite-size particles 
up to the dipole moment about the nearest grid point has been carried out both in z 
and r directions using an (r - z) rectangular mesh, while in the toroidal direction, 
no expansion is made and the eigenfunction exp(-in+) is used all the way keeping 
the reasonable number of modes in that direction. 

Inverting the finite Fourier transform of p,(k, , k,), with respect to k, , we obtain 
the charge density on the radial grid points pR(R1 + n’dr, k,). The Poisson equation 
in r direction finally becomes 

[ $ + i f - (f + k,2)] @Jr, k,) = -4rp,(r, k,) (18) 
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where p&,/r,) is calculated by inverting Eq. (17) numerically. Radial Eq. (18) has 
been solved by using the cubic spline technique as described below [15, 161. Cubic 
spline has been applied successfully in integrating the nonlinear Vlasov equation [16]. 

Let& (i = l,..., N) be the values of a function f on N equally spaced grid points 
with a width A. Using cubic spline we write for the interpolation functions 

(19) 

where riwl I r I r’i+l . From the condition that the function and its derivatives are 
continuous at the grid points, it is easy to show that the recurrence formula for 
Pi’s and S’s are 

3(ji -f;:+l) + Pi+1 + 2Pi + !$i = O (20) 

and 
Pi-l + 4Pi + Pi+1 = Xji+l -J-l) (21) 

where d = 1 is assumed. From Eq. (19) we immediately see that Pi and Si correspond 
to the values of dyg/dr I,.+( and d”yi/d? lTzri , respectively. If we write radial Poisson 
Eq. (18) in a finite difference form and approximate the first and second derivatives 
of the potential by the spline values, Eq. (18) becomes 

Si + BiPi + C& = pi (22) 

where Bi , Ci are constant coefficients associated with Eq. (18) and pi stands for the 
density on the radial mesh. Now eliminating Si and Pi from Eqs. (20)-(22), we arrive 
at the final difference equation 

! 
(4 - 4)MG - 6) - 6(Bi-1 - 4)l f,- 

4 + (Bi-1 - 4)(Bi + 4) 1 81 

- - - - - 
((G - 6) + (Bi 4)[12 (Bi-l 4)(Ci 6)] + 2[6(Bi 4) 

- 
2(Ci 

- 
+ 6)J [4 + (B,-1 - 4)(Bi + 4)l 4 + (4 - 4)(&+, + 4) 1 f, ’ 

- - - 
- + 6 - 2[12 (B< 4)(Ci,, 6)] )A,, = ( 2(Bi 4, 4 f (Bi - 4)(Bi+1 + 4) 4 + (L - 4)(B, + 4) 

) pi-1 

- 4 - 
+ t1 - (Bf-1 4)(Bi 4) - 1 pi 4 + (Biel - 4)(B, + 4) 4 + (Bi - 4)(Bi+l + 4 

2(B, - 4) 
+ ( 4 i- (4 - 4)(Bi+, + 4) 1 Pi+1 * (23) 

This equation can be solved with appropriate boundary conditions. The error analysis 
of spline has been given in many places [I 51 and is proportional to A4. The above 
scheme has been tested for solving the Poisson equation where the solution is known 
analytically to be a Bessel function. The numerical results are found to agree with 
the analytic results within the sufficient accuracy. 
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Now let us briefly calculate the force on a finite-size particle. The electric force 
for a particle at (rj , k , zj) is given by 

x exp[-(r - rj)2/2u,.2 - (z - zJ2/2aZ2 - (4 - +J2/2ud2]r dr d+ dz 

where E(r, (f, z) is calculated from @,(k, , k,) and is given by, for example, 

W, 4, z> = $J -W, -4 exp(inyV 
-iZ=-N 

then 

FAri , A , zi> = f qi exp(--‘ad2/2) . exP(inA) 
27ra,a, I 

E (r z) 
nz 9 

73=-N 

1 exp( - [(.a - zJ2/2aZ2 + (r ‘- rJ2/2a,“]) dr dz. 

Now following the procedure of multipole expansion scheme, let us Fourier transform 
the force FZ(rj , $? , zj) with respect to (rj , q) 

. exp(-(z - zJ2/2aZ2 - (r - rJ2/2aT2) 

. exp[--i(k,q + k,(rj - &))I E&r, z). 

The integral with respect to z and zj is straightforward in finding 

F&k, , $j 3 kz) = 
exp( - kZ2aZ2/2 - n2ad2/2) 

(27r)lj2a, f 
n=-N 

qi eMin&) 1 dr JR: dr&,&, k,) 

. exp(-(r - rJ2/2aT2) exp(-ik,(rj - R,)) 

= exp(-(kz2az2 + kr2ar2 + n2u,+2)/2) f qi exp(in4j) &(k, , k,). (24) 
n=-N 

The force on thejth particle is calculated from the inverse transforms of (24) and then 
expanded around the nearest grid point. Writing rj = niTAr + 6r, and zj = nj”Az + 
szj 3 

FZ(ri , +j , ~5) = FZ(njTAr, &, n,ZAz) + Sri -$ + SZ, s 

where the derivatives of Fe are evaluated at the nearest grid point and are calculated 
by differencing F,‘s on the neighboring points. 



NEW 3-D SIMULATION MODELS 145 

The evolution of the system is obtained by pushing ions with the full Lorentz 
force and integrating the guiding center drift equations for electrons. The electron 
guiding center equations are given by 

- & (+ 4 vf12) B x VB, 
e e 

dv,,- q E*B 
-& B . V&B) + 3 (E x B) - VB, 

dt --m,B- e 

mvL2 _ 
‘= 2B 

- - constant, (25) 

where 
v.B 

?I,, =- 
B 

and 

The integration scheme used is a second-order predictor-corrector scheme known 
as the modified Euler method [17]. Symbolically, the guiding center equation can be 
written as dr/dt = v(r, t). Then the time difference scheme is 

f,+l = f,-l + 2At v(r, , td, 

r n+l = r, + WWrn , L) + ~(f,+~ , t,+d). (26) 

Note that this scheme requires two solutions of the Poisson equation per time step. 

3. TEST OF THE MODEL 

After developing the cylindrical and toroidal models described above, we have 
tested the codes by measuring the total energy conservation, thermal fluctuation 
spectrum, and the particle orbit. 

1. Test of the Cylindrical Model 

Let us briefly describe the test results from the three-dimensional slab model. We 
consider a simple system in which the magnetic field is uniform and in the z-direction 
only. The plasma is assumed uniform and is periodic in y- and z-directions while it 
is bounded between x = 0 and L, due to the conducting walls which reflect particles 
in the same manner described in Ref. [6]. 

Figure 3 shows the time-averaged thermal spectrum for different modes of k = 
(k, , k, , k,) = (2rrm/L,, 27rn/Ly, 2&/L,) where the size of the box was chosen 
(L, , L, , L,) = (32, 32, 32). In this particular example, 5 modes (I = 0, f 1, f2, &3, 
+4) in the z-direction while 32 x 32 spatial mesh was employed in the x-y plane. 
The other parameters of simulations are 21e particles for ions and electrons respectiv- 
ely, J&$-G. = 5, T, = Ti , mi/m, = 25, v, = 2, a, = av = a, = 1, and w,,At = 1. 
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Q, is the electron gyrofrequency, U, is the electron thermal speed, a is the Gaussian 
particle size which is taken isotropic in three directions, and At is the time integration 
step size. We note that the fluctuation spectrum averaged over w,,t = &50 is in 
good agreement with the theoretical prediction ERa/8n = T/2 [I]/[1 $ kzhD2 exp 
(k2az)] as shown by the solid line. The total energy conservation was about 0.5 % 
at the end of the calculation. This may be due to, for example, too large a time step 
of integration or too few particles per Debye sphere. Electrons were pushed by the 
quiding center drift equation in the transverse direction whiie the electron parallel 
motion was followed exactly. Ions were pushed exactly. Full dipole calculations were 
employed in this example which took about 100 psec per particle for one iteration 
on the CDC 7600 using a Fortran code utilizing Stacklib subroutines. The nearest 
grid point calculations take 60 psec and it may be required for large, three-dimensional 
calculations to be finished within a reasonable computing time. 

FIG. 3. Fluctuation spectrum for the three-dimensional slab model described in the text. The 
time-averaged simulation result agrees well with the theoretical predictions. 

We have simulated the same example shown above with the number of modes in z 
doubled (I = 0, 51, +2 ,..., 19). It is observed that the shorter-wavelength modes 
also satisfy the energy partition law as well. There was no significant differences 
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observed for the gross behavior of plasmas such as total energy conservation for both 
cases. This is an encouraging observation since it indicates that we need not keep 
many modes in the axial direction. 

Several production runs have been carried out after testing the model. Typically 
the system size is 64 x 64 grid in the x-y plane and 1280 in the z-direction with 218 
particles. M,/M, = 100, w,,At = 4, sZ,jw,, = 5, TJT, = 4, a, * au = 2, a, = 64, 
and v, = 2 were used. We have observed low-frequency drift wave instabilities 
and anomalous diffusion. In this example, four modes were kept in the z direction 
and it took 5-6 hours to reach the nonlinear saturation state. 

2. Test of the Toroidal Model 

In the toroidal model the imposed magnetic field is taken to be B = &,BB + tY,+B6 , 
where 

B,(r) = Bt)R,,/r, 

yB(d 
Be = FB,$‘)/q(T;) R,, = $&- (1 - $j, 

and 

r = &+Fcos8. 

The coordinate (i’, 0) measures the position in the cross-sectional plane of the torus 
with ? the distance from the minor axis and 8 measured from the toroidal plane to 
the inside. R, and zi are the major and minor radius, respectively, and q(O) is the safety 
factor and B&O) the toroidal field at the minor radius. The plasma is assumed to be 
bounded due to the conducting walls which reflect particles. 

Initially the plasma density and temperature profiles are taken to be gaussians 
with, e.g., 

n(F) = -2e-r2/Cii2 
Ca2(1 - e-Ii3 ’ 

The constant C characterizes the degree of nonuniformity. The plasma is locally 
Maxwellian. Figure 4 shows the fluctuation spectrum averaged over the r-direction 
for different modes of (k, , km) = (2771/L,, n/R,). The size of the torus is taken 
li = 16, R, = 40. There are five modes (FZ = 0, *l, 42, *3, f4) in the toroidal 
direction $ and 32 x 32 spatial mesh was employed in the r-z cross-sectional plane. 
The other parameters of the run are 214 particles for each species, 52,/w,, = 4, 
T,/Ti = 10, mJm, = 100, A,, = 2, a (isotropic particle size) =I and w,,At = 1, 
CTi = C,, = 0.25, Cni = C,,, = 0.5, where 9, is the electron gyrofrequency at 
the minor radius, uge is the average electron plasma frequency, C, and C, denote 
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temperature and density nonuniformity, and T&/T, = 10 at the center of minor 
radius. 

As we can see, the agreement between the theoretical predictions and the numerical 
results averaged over w,,t = 50-100 is quite satisfactory for short-wavelength modes. 
The long-wavelength modes generated by the VB drift of the ions have not yet reached 
the equilibrium, because the computations were too short for the electron flow along 
the field lines to compensate the ions. The theoretical fluctuation spectrum averaged 
over the radial direction for a finite-size particle system is given by 

I r dr ’ E’ri7Z’ “‘“i($ LR) = & 1:” 1 + (vz + x2) ex$(y2 + x2) a2/XD2] 

where y2 = (n2/R,2 + 12&2)&,2 and is shown by the solid line. The error for the 
total energy conservation at the end of the calculation (user = 100) is about 1 %. 

FIG. 4. Fluctuation spectrum averaged over the radial direction for the toroidal model described 
in the text. The time-averaged simulation result agrees well with the theoretical prediction shown 
by the solid line. The enhancement for long-wavelength modes is presumably due to the VB drift 
which separates the ions from the electrons in the z-directions. 
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This may be due to too large a time step of integration, too few particles per Debye 
sphere, the reflecting boundary walls which exert external force on the particles. 
Because the toroidal model is more complicated than the slab model, the former 
takes about 50 % more computations than the latter. 

4. CONCLUDING REMARKS 

We have developed a new class of three-dimensional simulation models for cylindric- 
al and toroidal geometry by employing a hybrid approach of eigenfunction expansion 
and the multipole expansion on a spatial grid. The model is particularly useful for a 
system in which the axial length is much longer than the transverse dimension as 
seen for most of the experimental device for controlled fusion such as a tokamak, 
stellarator, and a z-pinch. 

Preliminary results for the test of the models are quite satisfactory and are encourag- 
ing for the application to more realistic problems. Full three-dimensional simulations 
for the drift-wave and trapped-particle instabilities are now studied by extending the 
previous slab model [6, 181. 

The other important area in which the model described may be very useful is the 
low-frequency hydromagnetic behavior of a plasma in cylindrical and toroidal systems 
from the microscopic point of view. In particular, king-tearing modes may be con- 
veniently simulated by keeping several modes in the toroidal direction such as seen 
for the tokamak experiments. The present model is quite general including most 
of the kinetic effects in contrast to fluid model so that, for example, the effects of the 
plasma transport on the stability is automatically included in a self-consistent manner. 
It is, of course, necessary to build in the self-consistent magnetic field, in addition 
to the electrostatic electric field. While the present code is collisionless, the collisional 
effects may be added in terms of Monte Carlo method [4]. 

In the toroidal model, the charge density of a finite-size particle, Eq. (13), depends 
on the radial position ri through the geometric factor l/rj . However, since the shield- 
ing of the toroidal modes is due to exp(--n2am2/2), which is independent of the geo- 
metric factor, the short-wavelength modes comparable to the particle size in the 
toroidal direction are strongly shielded and, therefore, have no effects on the dynamics 
of the system. 

One other remark is ready for the method we developed for the simulation of 
toroidal plasmas. Because of the finite size of the particles, we calculated the grid 
charge density by Fourier transforming the exact charge density and then kept it 
up to the dipole term. Then the grid charge density was transformed back to physical 
space with respect to the radial coordinate since the Poisson equation was solved 
on the radial mesh points by means of spline technique. This potential had to be 
transformed to k, space to calculate the force on a particle up to the dipole term. 
It is clear that if we could solve the radial Poisson equation in the transformed space 
rather than the physical mesh points, then two one-dimensional transforms would 
be saved. One obvious candidate is to make use of the Hankel (Bessel) transform 

581/25/z-6 
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[19] in the radial direction instead of the Fourier transform since the Bessel function 
is the eigenfunction of the Poisson equation given by (18). We are investigating this 
alternate method as well and the results will be reported elsewhere. 
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